MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress.
نویسندگان
چکیده
BACKGROUND AND PURPOSE We previously showed that the microRNA miR-424 protects against permanent cerebral ischemic injury in mice by suppressing microglia activation. This study investigated the role of miR-424 in transient cerebral ischemia in mice with a focus on oxidative stress-induced neuronal injury. METHODS Transient cerebral ischemia was induced in C57/BL6 mice by middle cerebral artery occlusion for 1 hour followed by reperfusion (ischemia/reperfusion). The miR-424 level in the peri-infarct cortex was quantified. Mice were also administered miR-424 angomir by intracerebroventricular injection. Cerebral infarct volume, neuronal apoptosis, and levels of oxidative stress markers and antioxidants were evaluated. In an in vitro experiment, primary cortical neurons were exposed to H2O2 and treated with miR-424 angomir, nuclear factor erythroid 2-related factor 2 siRNA, and superoxide dismutase (SOD) inhibitor; cell activity, lactate dehydrogenase release, malondialdehyde level, and manganese (Mn)SOD activity were then evaluated. RESULTS MiR-424 levels in the peri-infarct cortex increased at 1 and 4 hours then decreased 24 hours after reperfusion. Treatment with miR-424 decreased infarct volume and inhibited neuronal apoptosis after ischemia/reperfusion, reduced reactive oxygen species and malondialdehyde levels in the cortex, and increased the expression and activation of MnSOD as well as the expression of extracellular SOD and the redox-sensitive transcription factor nuclear factor erythroid 2-related factor. In neuronal cultures, miR-424 treatment abrogated H2O2-induced injury, as evidenced by decreased lactate dehydrogenase leakage and malondialdehyde level and increased cell viability and MnSOD activity; the protective effects of miR-424 against oxidative stress were reversed by nuclear factor erythroid 2-related factor knockdown and SOD inhibitor treatment. CONCLUSIONS MiR-424 protects against transient cerebral ischemia/reperfusion injury by inhibiting oxidative stress.
منابع مشابه
P18: Neuroprotective Effect of Safranal, an Active Ingredient of Crocus Sativus, in a Rat Model of Transient Cerebral Ischemia
Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L.) petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery ...
متن کاملColchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation
Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley ...
متن کاملBlockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor b...
متن کاملNeuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats.
Cerebral ischemia/reperfusion (I/R) injury is a major cause of acute brain injury. The pathogenetic mechanisms underlying I/R injury involve apoptosis, inflammation and oxidative stress. Osthole-a plant coumarin compound-has been reported to protect against focal cerebral I/R-induced injury in rats. However, the mechanism remains unknown. Here we hypothesize that osthole acts through inhibition...
متن کاملMiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation.
BACKGROUND AND PURPOSE We observed that microRNA-424 (miR-424) significantly decreased in an miRNA profile of circulating lymphocytes of patients with ischemic stroke. The present study focused on the potential and mechanism of miR-424 in protecting ischemic brain injury in mice. METHODS Cerebral ischemia was induced by middle cerebral artery occlusion in C57/BL6 mice. Cerebral infarction vol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 46 2 شماره
صفحات -
تاریخ انتشار 2015